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This analysis makes use of asymptotic analyses and numerical methods to address,
in the limit of small Reynolds and ionic Péclet numbers and small clearances, the
canonical problem of the forces exerted on a small solid spherical particle undergoing
slow translation and rotation in an incompressible fluid moving parallel to an elastic
substrate, subject to electric double-layer and van der Waals intermolecular forces,
as a representative example of particle gliding and the idealized swimming dynamics
of more complex bodies near soft and sticky surfaces in a physiological solvent. The
competition of the hydrodynamic, intermolecular and surface-deformation effects
induces a lift force, and drag-force and drift-force perturbations, which do not scale
linearly with the velocities, and produce a non-additivity of the intermolecular effects
by reducing the intensity of the repulsive forces and by increasing the intensity of the
attractive forces. The lift force enhances a reversible elastohydrodynamic adhesion
regime in both ionized and deionized solvents, in which lateral motion and lift-off
from the substrate can occur. An irreversible elastohydrodynamic adhesion regime,
produced by elastic instabilities in the form of surface bifurcations in the substrate, is
found to exist for both positive and negative lift forces and is enhanced by small gliding
velocities and large substrate compliances, for which critical thresholds are calculated
for both ionized and deionized solvents. Elastohydrodynamic corrections are derived
for the critical coagulation concentration of electrolyte predicted by the Derjaguin–
Landau–Verwey–Overbeek (DLVO) standard theory of colloid stabilization. The
corrected DLVO critical concentration is unable to describe the adhesion process
when the substrate is sufficiently compliant or when the solvent is deionized. These
effects may have consequences on the lateral motility and adhesion of small particles
and swimming micro-organisms to soft and sticky substrates, in which the reversible
or irreversible character of the adhesion process may be influenced not only by the
solvent ionic strength, as described by the DLVO theory, but also by the motion
kinematics and the substrate mechanical properties.

1. Introduction
Soft materials can be deformed by the action of external forces (Landau & Lifshitz

1959; Johnson 1985). Nearby substrate deformations produced by hydrodynamic
and intermolecular forces induce nonlinearities on the otherwise linear equations of
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Figure 1. Sketch of typical particle–surface interaction energy curves in the DLVO theory,
adapted from Israelachvili (1985), for (a) low and (b) high (critical coagulation) concentration
of electrolyte in the solvent.

viscous fluid motion at low Reynolds numbers and produce forces on submerged
moving particles and swimmers that may serve as representative sources of lateral
motility at small scales and may also suppress adhesion. However, such deformations
may as well enhance adhesion if the internal restoring force of the substrate is not
sufficiently large to outweigh the resulting hydrodynamic and intermolecular traction
stresses on its surface.

The study of the intermolecular and viscous hydrodynamic interactions between
solids and soft substrates may be of some interest from a biology perspective.
Motivated by the practical importance of the control and suppression of biofilm
growth on surfaces, adhesion of motile bacteria to rigid substrates has been previously
analysed by accounting for electric and van der Waals forces (Vigeant, Ford &
Wagner 2005). The study of the distinguished balance between these two interactions
is the subject of the celebrated Derjaguin–Landau–Verwey–Overbeek (DLVO) theory
(Derjaguin & Landau 1941; Verwey & Overbeek 1948), which is regarded as the
fundamental theory of the stabilization and adhesion of lyophobic particles, although
this theory may need to be modified to account for hydrodynamic effects and to
accurately describe the phenomena of bacterial adhesion (Vigeant et al. 2005; Berke
et al. 2008). Earlier work (Vigeant et al. 2005) identified reversible (short residence
times and lateral motility) and irreversible (long residence times and sessility) adhesion
modes, which depended on the ionic strength in the solvent. The reversible adhesion
mode exemplifies a gliding motion along the surface in which the bacteria are
momentarily entrapped in an accessible potential minimum, whereas the irreversible
mode is experimentally observed as a ‘sudden death’ of the bacteria when they fall
into the primary minimum, a region dominated by Born repulsion and steric forces,
once the energy barrier becomes small at sufficiently large electrolyte concentrations,
as shown in figure 1. Effects of surface chemical heterogeneities have been previously
proposed as precursors of lateral immobilization and irreversible adhesion (Busscher,
Poortinga & Bos 1998). In a more general situation, the presence of a nearby soft
interface has been proved to produce kinematically irreversible forces on swimming
bodies and moving particles at low Reynolds numbers (Berdan & Leal 1981;
Skotheim & Mahadevan 2005; Weekley, Waters & Jensen 2006; Urzay, Llewellyn-
Smith & Glover 2007; Trouilloud et al. 2008), which may modify their adhesion
behaviour; the velocity scaling of these forces departs from the linear, kinematically
reversible Stokesian velocity scaling of the hydrodynamic forces in viscous flows
bounded by rigid surfaces, in which it produces direction-invariant forces under
velocity-direction reversals. The near-contact motion of micro-organisms close to soft
living tissues may be inevitably influenced by a number of complexities involving
biochemical, intermolecular and hydrodynamic interactions and surface deformations
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upon adhesion, but the study of simplified analytical models may still be warranted
for shedding some modest amount of light into these intricacies.

From a general engineering standpoint, electric and van der Waals intermolecular
forces are inherently present in the near-contact dynamics of liquid and solid
interfaces, and are perhaps the most important contribution to the forces involved
in the coagulation of colloids, bubble and droplet coalescence, physical adsorption
and adhesion of particles to substrates (Israelachvili 1985; Lyklema 2005). Although
the van der Waals forces between two atoms or molecules decrease with the seventh
power of the separation distance, the forces between large molecular assemblies,
such as spheres or plates, decrease with the second or third power of the separation
distance, so that the effects of these interactions between macroscopic bodies prove
to be still appreciable at a moderately long range (0.1 µm or more) (Israelachvili
1985; Lyklema 2005). Dispersion and coagulation of a suspension of particles may
occur depending on the relative intensity of the electric double-layer and van der
Waals forces, the balance of which is mainly modulated by the ionic strength in the
solvent (Derjaguin & Landau 1941; Verwey & Overbeek 1948). Similarly, sheared
concentrated suspensions of dense polymer microgel pastes display a slip behaviour
beyond a critical sliding stress that is thought of being produced by a combination of
elastohydrodynamic and intermolecular effects (Meeker, Bonnecaze & Cloitre 2004;
Seth, Cloitre & Bonnecaze 2008).

Earlier pioneering works on the viscous motion of a cylinder near soft and non-
sticky surfaces by Skotheim & Mahadevan (2005), and the near-contact dynamics
of a sphere near a rigid wall by Goldman, Cox & Brenner (1967b), O’Neill &
Stewartson (1967) and Cooley & O’Neill (1968), are generalized in this investigation
by addressing the canonical problem of the forces exerted on a small spherical particle
undergoing slow translation and rotation in a perfect liquid near a soft substrate,
subject to electric and van der Waals intermolecular forces. Forces produced by the
triple interaction of hydrodynamic, intermolecular and substrate-deformation effects
are derived, and novel limiting conditions for adhesion, based on critical substrate-
mechanical properties, gliding velocities and electrolyte concentrations, are obtained
in this analysis by making use of asymptotic analyses and numerical methods.

The paper is organized into seven additional sections and two appendices. Section 2
is dedicated to a general formulation of the problem, within the framework of a
hydrodynamic lubrication model. Then, in the limit of nearly rigid substrates, an
asymptotic scheme of the problem is proposed in § 3. Section 4 summarizes the main
characteristics of the leading-order solution for rigid substrates. The second-order
problem, which corresponds to the first perturbation of the wall deformation, is
solved in § 5, analytical formulas for the elastohydromolecular forces are derived in
the nearly rigid wall asymptotic limit and they are compared to numerical simulations,
which are further extended to order-unity dimensionless substrate compliances.
Elastohydrodynamic adhesion regimes and the lift-off process from the substrate are
addressed in § 6. Section 7 is dedicated to the influences of the substrate mechanical
properties. Finally, conclusions are drawn in § 8. Appendix A provides a mathematical
description of the substrate mechanics, and Appendix B analyzes the simpler problem
of the elastostatic adhesion mechanism of a stationary sphere produced by surface
bifurcations on the soft substrate.

2. Formulation
A rigid spherical particle of radius a and dielectric constant εs translates at constant

velocity U along the x axis, and rotates at constant angular velocity Ω about an axis
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Figure 2. The model problem. The soft substrate is deformed by the hydrodynamic, electric
and van der Waals intermolecular forces between the sphere and wall surfaces. Cases β = 0
and β = π/2 represent corkscrew and purely rolling motions, respectively.

orientated at an arbitrary azimuth angle β with respect to the translation axis, with
both axes parallel to the unperturbed wall surface as depicted in figure 2, in this way
representing a general drift motion on the horizontal plane. The sphere is immersed
in a Newtonian incompressible fluid, which corresponds to an aqueous symmetric
electrolyte of density ρ, equal to that of the sphere, viscosity µ, ionic valency zi , ionic
diffusion coefficient Di and dielectric constant εf . The clearance or minimum gap
distance between the sphere and the unperturbed wall surface is δ = εa, with ε � 1 a
small parameter. The ionic concentration in the bulk electrolyte far from the sphere
is denoted by ci . The soft substrate comprises an elastic layer of thickness �, dielectric
constant εw , Young modulus E and Poisson coefficient ν, and is bonded to a rigid
motionless substrate. The ratio of the characteristic surface deflection Hc, produced
by the hydrodynamic stress, to the minimum clearance δ is defined as the softness
parameter, elastoviscous number or hydrodynamic compliance η = Hc/δ. The motion
can be considered steady in the reference frame shown in figure 2 as long as the time
scale of the sphere motion, δ/U , is much longer than the viscous time scale, δ2/ν,
which is also much longer than the substrate response time scale, δ/c, where c is
the speed of sound in the substrate. Then, the Reynolds numbers of translation and
rotation are small, ReU = ρUa/µ � 1 and ReΩ = ωReU � 1, so that the flow can be
described by the Stokes equations to leading order. In this formulation, ω =Ωa/U is
a kinematic parameter that measures the ratio of the rotational to the translational
peripheral velocities.

The conservation equations are non-dimensionalized with a as the unit of length, Hc

as the unit of surface deflection, UV(ω, β) as the unit of velocity and µUV(ω, β)/a
as the unit of pressure, where

V(ω, β) = |ex − ω × ez| =
√

1 + ω2 + 2ω sinβ (2.1)

is a characteristic non-dimensional velocity in the clearance, with ei as unit vectors,
and ω = Ωa/U . Thus, hereafter the velocity UV(ω, β) is referred to as the ‘gliding
velocity’. In these variables, and in an inertial reference frame translating with the
sphere, the mass and momentum conservation equations for the velocity v and
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hydrodynamic pressure P become

∇ · v = 0,

−∇P + ∇2v = 0,

}
(2.2)

subject to non-slip boundary conditions on the sphere and substrate surfaces, where
the velocity respectively is

v =
ω(z − 1 − ε) sinβ

V(ω, β)
ex − ω(z − 1 − ε) cosβ

V(ω, β)
ey +

ω(y cos β − x sin β)

V(ω, β)
ez, (2.3)

and

v = − ex

V(ω, β)
+

ηε(∇⊥H · ex)

V(ω, β)
ez. (2.4)

In this formulation, ∇⊥ is the two-dimensional gradient operator in x and y. The
second term on the right-hand side of (2.4) represents the vertical fluid entrainment
induced by the surface-deformation field, which remains stationary in this reference
frame.

A lubrication approximation can be obtained for ε � 1 by defining the inner
velocities v′

r = vr , v
′
ϕ = vϕ and v′

z = vzε
−1/2, the inner hydrodynamic pressure P ′ = Pε3/2

and the inner coordinates z′ = z/ε and r ′ = r/ε1/2. The surface of the sphere in the
gap region is given by (dropping primes)

h0(r) = 1 + r2/2 + O(ε). (2.5)

In these variables, a regular expansion in powers of ε yields, to leading order, the
conservation equations

1

r

∂

∂r
(rvr ) +

1

r

∂vϕ

∂ϕ
+

∂vz

∂z
= 0,

∂P

∂r
=

∂2vr

∂z2
,

1

r

∂P

∂ϕ
=

∂2vϕ

∂z2
,

∂P

∂z
= 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

subject to

vr = − cos ϕ +
cos(ϕ − γ )

V(ω, β)
, vϕ = sinϕ − sin(ϕ − γ )

V(ω, β)
, vz = −r cosϕ +

r cos(ϕ − γ )

V(ω, β)
,

(2.7)

on the sphere surface z = h0(r), and

vr = −cos(ϕ − γ )

V(ω, β)
, vϕ =

sin(ϕ − γ )

V(ω, β)
, vz =

η∇⊥H · ex

V(ω, β)
, (2.8)

on the wall surface z = −ηH . In this formulation, θ is the physical azimuth angle
(measured from the x axis as shown in figure 2), and

ϕ = θ + γ (2.9)

is a reduced angle, with γ (ω, β) as a phase angle of the gap pressure distribution
given by

γ (ω, β) = arctan

(
ω cos β

1 + ω sinβ

)
, (2.10)

with −π/2 � γ � π/2. For a purely rolling motion, β = π/2 and γ = 0, so that
ϕ = θ and the pressure distribution is dominated by the entrainment of fluid taking
place along the θ = 0 axis. For corkscrew motion, β → 0 and γ ∼ arctan ω, so that
as ω increases the peak pressures are expected to be increasingly dominated by the
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Figure 3. Top view of the gap region showing the spatial orientation of the polar azimuth
angle θ , phase angle γ and reduced angle ϕ.

lateral fluid entrainment enhanced by the rotational motion, shifting the pressure
peaks towards the line θ = −γ . The rotated system of coordinates (r, ϕ, z) is shown
in figure 3 and constitutes a valuable asset for the simplification of the analytical and
numerical integration of the problem as further detailed below.

The surface location and the vertical velocity there render the problem (2.6)–(2.8)
nonlinear. Continuity equation may still be used to eliminate the velocities after
integrating the momentum equations, which yields the Reynolds equation

∂

∂r

(
r
∂P

∂r
h3 + 6rh cos ϕ

)
+

1

r

∂

∂ϕ

(
∂P

∂ϕ
h3 − 6rh sinϕ

)
= 0, (2.11)

with h = h0(r) + ηH the gap profile. Equation (2.11) is subject to the boundedness
and periodicity conditions

|P | < ∞ at r =0, P → 0 at r → ∞, P |ϕ=0 = P |ϕ=2π,
∂P

∂ϕ

∣∣∣
ϕ =0

=
∂P

∂ϕ

∣∣∣
ϕ = 2π

.

(2.12)

Note that the velocity scaling and azimuth angle redefinition given by (2.1) and
(2.9) renders the nonlinear partial differential problem (2.11) and (2.12) independent
of ω and β , so that pressure solutions P (r, ϕ) obtained by integration of (2.11) and
(2.12) are valid for any rotation rate ω and rotation azimuthal orientation β , thus
reducing the space of solutions by two dimensions.

The radial and azimuth velocity fields in the gap correspond to a combination of
Couette and Poiseuille flows:

vr =
1

2

∂P

∂r

{
z2 − z [h0(r) − ηH ] − ηHh0(r)

}
−

[
cos ϕ − 2 cos(ϕ − γ )

V(ω, β)

] [
z + ηH

h0(r) + ηH

]
− cos(ϕ − γ )

V(ω, β)
,

vϕ =
1

2r

∂P

∂ϕ

{
z2 − z [h0(r) − ηH ] − ηHh0(r)

}
+

[
sinϕ − 2 sin(ϕ − γ )

V(ω, β)

] [
z + ηH

h0(r) + ηH

]
+

sin(ϕ − γ )

V(ω, β)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)
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and the vertical velocity is obtained by integrating the mass conservation equation

vz =

∫ h0(r)

z

[
1

r

∂

∂r
(rvr ) +

1

r

∂vϕ

∂ϕ

]
dz + vz

∣∣∣
z=h0(r)

, (2.14)

with the three velocity components expressed in the (r, ϕ, z) system of coordinates.

2.1. The electric double-layer and van der Waals pressures

The van der Waals forces arise from the interaction between permanent polar
molecules (Keesom orientation force), permanent polar and polarizable molecules
(Debye induction force) and non-polar but polarizable molecules (London dispersion
force). In contrast to other type of forces that may be present depending on the
particular properties of the molecules, the London dispersion interactions are always
present because of quantum-mechanical effects between fluctuating electron clouds,
and they are not easily screened by polar solvents. Using the Derjaguin approximation
(Derjaguin 1934), the effect of this interaction is assumed to result in a non-retarded
disjoining pressure or intermolecular compression stress ΠvdW that represents the
excess pressure in the gap compared to that of the bulk flow P . The disjoining
pressure acts as an additional compression stress on both the sphere and wall
surfaces, and its non-dimensional magnitude is

ΠvdW = − Υ

h3
, (2.15)

with

Υ =
Asf w

6πµUV(ω, β)a1/2δ3/2
(2.16)

as the ratio of the van der Waals to hydrodynamic characteristic stresses. In this
formulation, Asf w is the Hamaker coefficient, which depends on the particle, fluid
and wall dielectric constants and absorption spectra, and typically ranges from 1 to
100 times the thermal energy kT , with k as the Boltzmann constant and T as the
temperature (Israelachvili 1985; Lyklema 2005). The sign of the Hamaker coefficient
is the same as the sign of the product of the excess polarizabilities εs − εf and εw − εf

(Lifshitz 1956). If the dielectric constant of the liquid εf is intermediate between εw

and εs , the van der Waals force is repulsive, and attractive otherwise. The van der
Waals interactions are commonly attractive due to the high dielectric constant of usual
solvents.

The van der Waals forces alone do not usually determine the total intermolecular
interaction, except in vacuum or deionized solvents. In aqueous electrolyte solutions,
electroneutral solid surfaces may become spontaneously charged even under no
externally applied electric field. Specific ions are preferentially adsorpted by the
surface because of non-electrical affinity interactions with its molecules, while others
form an atmosphere of ions in rapid thermal motion in a thin cloud of thickness
of O(�D) close to the surface, where �D is the Debye length, in such a way that the
charged cloud and surface charge form an electroneutral system. Associated with this
spontaneous formation of the double layer is a decrease of the Gibbs free energy,
which ultimately leads to a combination of an osmotic overpressure and Maxwell
stresses in the gap, with their total contribution classically represented by a disjoining
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pressure or electric compression stress Πel given by (Derjaguin 1934)

Πel = Ξe−κ(h−1), (2.17)

with

Ξ =
64δ3/2ciNAkT

µUV(ω, β)a1/2
λ
(
Ψ d

w, Ψ d
s

)
e−κ (2.18)

as the ratio of the electric to hydrodynamic characteristic stresses, and

κ =
δ

�D

=

√
2(zieδ)2ciNA

ε0εf kT
(2.19)

is the Debye–Hückel parameter. The function λ(Ψ d
w, Ψ d

s ) is given by (Lyklema 2005)

λ
(
Ψ d

w, Ψ d
s

)
= tanh

(
ziΨ

d
w/4

)
tanh

(
ziΨ

d
s /4

)
. (2.20)

Equation (2.17) represents the non-dimensional electric pressure for the interaction
of two double layers of a symmetric electrolyte solution of concentration ci . In this
model, Ψ d

s and Ψ d
w are the non-dimensional Stern potentials (which are approximately

similar to the zeta potentials) of the sphere and substrate surfaces respectively, which
are assumed to be constant and are non-dimensionalized with the thermal voltage
kT /e ∼ 25 mV. Additionally, in this formulation e is the protonic charge, ε0 is the
permittivity of vacuum and NA is the Avogadro’s number. At constant and symmetric
zeta potentials, the double-layer interaction results in a repulsive force, because, as
the particle approaches the wall, ions must be driven off the substrate to decrease the
surface charge, which in turn is proportional to the gradient of the electric potential
on the surface; this forced discharge results in an increase of Gibbs free energy.
More involved models of electric double-layer pressures could be used here, which
may include important effects such as charge regulation due to surface chemical
equilibrium constraints (Israelachvili 1985; Lyklema 2005), or surface permeability
to ionic fluxes, which is believed to influence bacterial adhesion by ion-channelling
effects in bacterial walls (Poortinga et al. 2002). Nonetheless, (2.17) represents a good
and logical starting point for the present investigation.

Earlier work by Bike & Prieve (1995) found that the pressure gradient in the
gap between a sliding sphere and a planar wall may distort the electric double-
layer equilibrium configuration described above, producing an electro-osmotic flow
of ions near both surfaces and a streaming potential in the gap, which in turn
generate an electrokinetic lift on the particle. Electrokinetic interactions are found
to be comparable to intermolecular forces only for highly viscous, low-conductivity
solutions such as 95 % glycerol–water mixtures (Wu, Warszynksi & van de Ven 1995),
for which the ionic Péclet number Pei =UVδ/Di is of order unity or larger, with Di

as the ionic diffusion coefficient. In this investigation, electrokinetic forces produced
by pressure gradients are neglected since the characteristic diffusion time of the ions
in the gap, δ2/Di , is assumed to be much smaller than the characteristic time of
translational or rotational motion, δ/UV, so that Pei � 1 and the perturbation of
the equilibrium electric double-layer produced by the convective transport of ions
can be neglected in the first approximation. This simplification leads to a Boltzmann
distribution of ionic concentration in the gap, from which the electric pressure (2.17)
is derived by solving the corresponding Poisson–Boltzmann equation (Lyklema 2005).
The condition Pei � 1 is easily satisfied by typical highly conductive physiological
solutions (mostly containing Na+, K+, Cl−, Ca2+ and Mg2+), for which the ionic
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diffusion dominates and the electrokinetic lift on the sphere is at least three to four
orders of magnitude smaller than the elastohydromolecular forces resulting from the
present analysis.

For convenience, the hydromolecular pressure P � is defined as

P � = P + ΠvdW + Πel, (2.21)

which represents the net compression normal stress (hydrodynamic and inter-
molecular) acting on the sphere and substrate surfaces. The hydromolecular pressure
P � is, in general, a function of the intermolecular and kinematic parameters, the
fluid and wall mechanical properties and the spatial coordinates.

Equations (2.11), (2.12), (2.15) and (2.17) need to be supplied with an appropriate
substrate mechanical model. The substrate mechanics is analysed in Appendix A.

2.2. Effects of ionic strength: the critical coagulation concentration

In the framework of the classic DLVO theory, sufficiently large electrolyte
concentrations ci may lead to a double-layer compression effect, by which the Debye
thickness �D decreases with increasing ci and the particle can approach a shorter
distance before any repulsion is felt. Further approach produces a large attracting
van der Waals force on the particle able to outweigh any repulsion. This leads to
rapid coagulation if the energy barrier to the irreversible adhesion minimum becomes
smaller than the energy associated with Brownian perturbations of the gap distance.
The critical concentration for the rapid coagulation of a sphere on a flat rigid substrate
is given by the system of equations

Fz(δ
�) = 0 and

∫ ∞

δ�

Fz(δ) dδ ≈ bkT , (2.22)

where Fz is the net intermolecular force on the sphere and b is a constant, which
is conventionally set to b = 0 for a small energy barrier (Verwey & Overbeek 1948).
Equation (2.22) represents the coagulation event or irreversible adhesion in the
primary minimum as sketched in figure 1, and they give the critical conditions
for which the force on the particle is zero while the work produced by a random
perturbation of the gap distance against the normal force is roughly a multiple of
the thermal energy of the surrounding molecules. When Fz is obtained by the classic
DLVO theory, these expressions yield the critical coagulation concentration

c�
i0 = 73728π2e−2 (ε0εf )3(kT )5λ2(Ψ d

w, Ψ d
s )

(zie)6A
2
sf wNA

(2.23)

(Lyklema 2005). The minimum clearance for coagulation, δ�
0 , measured with respect

to the Debye layer thickness based on ci0, is given by κ�
0 = δ�

0 /��
D0 = 1.

As shown below, Fz is also influenced by hydrodynamic and substrate compliance
effects, so that (2.23) needs to be correspondingly modified. Additionally, local
substrate deformations produced by elastic instabilities of hydromolecular origin
are found in this analysis to induce irreversible adhesion, an effect that is obliterated
by simply using the criterion (2.22) and (2.23).

3. Nearly rigid-wall asymptotics and summary of main
non-dimensional parameters

In this model, the characteristic area of the lubrication region is δ2/ε, which,
by the chordal theorem, is also roughly the area of the circular zone centred at
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a distance −δ inside the sphere. This area is of the same order of magnitude as
the effective interaction area of the van der Waals forces, and it is larger than the
typical interaction area δ2/εκ of the electric double-layer forces (Israelachvili 1985),
since these decay exponentially in the radial direction with a slope proportional to κ ,
with κ � O(1). It must be emphasized that, in this analysis, surface deformations are
restrained to occur in the lubrication region. This assumption proves to be accurate
if the characteristic deformation Hc is much smaller than the lubrication region size
δ/ε1/2, or equivalently, if the hydrodynamic compliance satisfies η � 1/ε1/2. Analyses
for larger values of η may produce appreciable surface deformations outside the inner
lubrication region, so that η may have to be incorporated in the inner scaling of the
lubrication zone and an asymptotic matching may have to be performed with the
outer viscous region as similarly performed in earlier works (O’Neill & Stewartson
1967; Cooley & O’Neill 1968) for the rigid-wall case.

The regular asymptotic expansions

P � = P
�
0 + ηP

�
1 + O(η2),

h = h0(r) + η[H0 + ηH1 + O(η2)],

v = v0 + ηv1 + O(η2),

⎫⎪⎬
⎪⎭ (3.1)

are defined for slightly soft surfaces η � 1. The corresponding expansions of the
van der Waals (2.15) and electric pressures (2.17) yield

ΠvdW = ΠvdW
0 + ηΠvdW

1 + O(η2) = −Υ/h3
0(r) + 3Υ H0η/h4

0(r) + O(η2) (3.2)

and

Πel = Πel
0 + ηΠel

1 + O(η2) = Ξe−κ[h0(r)−1] − κΞηH0e
−κ[h0(r)−1] + O(η2). (3.3)

The van der Waals and electric compliances are defined as

∆vdW = ηΥ, and ∆el = ηΞ, (3.4)

and they represent the ratio of the intermolecular to the elastic characteristic stresses.
The method for the calculation of ∆el , ∆vdW and η as a function of the dimensional
parameters is detailed in Appendix A by the expressions (A 23)–(A 28).

In what follows, asymptotic solutions of (2.11)–(2.12) are sought in the nearly
rigid-wall asymptotic (NRWA) limit: η � 1, ∆vdW � 1, ∆el � 1 and κ � O(1). In
this asymptotic limit, the elastic stress dominates over the intermolecular and
hydrodynamic stresses on the substrate, which produce small surface deformations,
with no clear limitation in the ratios of hydrodynamic to intermolecular stresses
as long as they are sufficiently small such that the expansions (3.2) and (3.3) are
asymptotic, Υ � 1/η and Ξ � 1/η.

Note that the NRWA limit may represent realistic physical conditions that may
well be found in the hydrodynamics of small particles over soft materials. Table 1
summarizes the non-dimensional parameters introduced in the preceding sections and
compares the asymptotic ordering required in the NRWA limit with typical values
extracted from earlier studies in particle adhesion assuming a moderately soft material
as a substrate. Nonetheless, the substrate compliances are highly nonlinear in the gap
distance and inversely proportional to the substrate compliance, so that they are
expected to rapidly attain O(1) values upon adhesion and for softer materials.
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Parameter Substrate Definition Ordering estimate

Hydrodynamic compliances

η0 Thin layer compressible
µUV(ω, β)�a1/2(1 + ν)(1 − 2ν)

E(1 − ν)δ5/2
� 1 0.05

η2 Thin layer incompressible
µUV(ω, β)�3

Ea1/2δ7/2
� 1 0.002

η∞ Semi-infinite medium
µUV(ω, β)a(1 − ν2)

πEδ2
� 1 0.08

van der Waals compliances

∆vdW
0 Thin layer compressible

Asf w�(1 + ν)(1 − 2ν)

6πE(1 − ν)δ4
� 1 0.001

∆vdW
2 Thin layer incompressible

Asf w�3

6πaEδ5
� 1 0.00008

∆vdW
∞ Semi-infinite medium

Asf wa1/2(1 − ν2)

6π2Eδ7/2
� 1 0.002

Electric compliances

∆el
0 Thin layer compressible

64(1 + ν)(1 − 2ν)�ciNAkT

E(1 − ν)δ
λe−κ � 1 0.005

∆el
2 Thin layer incompressible

64�3ciNAkT

Eaδ2
λe−κ � 1 0.0002

∆el
∞ Semi-infinite medium

64a1/2ciNAkT (1 − ν2)

πEδ1/2
λe−κ � 1 0.008

Intermolecular–hydrodynamic stress ratios

Υ –
Asf w

6πµUV(ω, β)a1/2δ3/2
� 1/η 0.03

Ξ –
64δ3/2ciNAkT

µUV(ω, β)a1/2
λe−κ � 1/η 0.1

Debye–Hückel parameter

κ –

√
2(zieδ)2ciNA

ε0εf kT
� O(1) 10.3

Table 1. Fundamental non-dimensional parameters and their definition, their asymptotic
ordering in the NRWA limit and numerical estimates, which are based on a particle of
radius a =50 µm gliding at UV =50 µms−1. The parameters of the substrate are E = 1 kPa,
�= 0.5 µm (when finite), ν =0 (when compressible), ν =0.5 (when incompressible), δ = 0.1 µm.
The solvent is a symmetric monovalent aqueous electrolyte of ci = 1 mM NaCl, zi = 1,
ρ = 1000 kg m−3, µ= 1 mPa s, εf =80, Ψ d

s = Ψ d
w = −2 and Di = 10−9 m2 s−1. The Hamaker

coefficient is Asf w = 1.5 kT , with T = 300 K. Typical values of the dimensional intermolecular
parameters are obtained from Israelachvili (1985) and Lyklema (2005).

4. Hydrodynamic and intermolecular forces: the leading-order solution (η =0)
To leading order in η, the intermolecular forces are decoupled from the

hydrodynamic forces since there is no surface deformation. Integrating the electric
and van der Waals pressures (2.15) and (2.17) over the vertical projection of the inner
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element of the sphere surface dSz = −a2εrdrd ϕez yields

F vdW
z0 = −µUV(ω, β)a

ε1/2

∫ 2π

0

∫ ∞

0

ΠvdW
0 r dr dϕ = −πµUV(ω, β)aΥ

ε1/2
= −Asf wa

6δ2
, (4.1)

and

F el
z0 =

µUV(ω, β)a

ε1/2

∫ 2π

0

∫ ∞

0

Πel
0 rd rdϕ

=
2πµUV(ω, β)aΞ

ε1/2κ
= 128πa�Dc∞

i NAkT λ(Ψ d
w, Ψ d

s )e−δ/�D , (4.2)

which correspond to well-known formulas of intermolecular forces (Derjaguin
1934; Hamaker 1937), which are independent of the hydrodynamic field or gliding
kinematics.

To leading order in η, the Reynolds equation (2.11) becomes

r2 ∂2P0

∂r2
+

[
r +

3r3

h0(r)

]
∂P0

∂r
+

∂2P0

∂ϕ2
= − 6r3

h3
0(r)

cos ϕ, (4.3)

where P0 is the leading term of a regular asymptotic expansion of the hydrodynamic
pressure in powers of η. Equation (4.3) is subject to boundary conditions (2.12)
particularized for the leading-order hydrodynamic pressure. The exact solution

P0 =

[
µUa1/2(1 + ω2 + 2ω sinβ)1/2

δ3/2

]
6r cos[θ + γ (ω, β)]

5(1 + r2/2)2
(4.4)

can be obtained in terms of the dimensional hydrodynamic pressure. The contours
of (4.4), non-dimensionalized with µUa1/2/δ3/2, are shown in figure 4. Note that once
the cosine term in (4.4) is expanded, the pressure scaling with the velocity results to
be linear in both U and ω, with the total pressure the sum of the pressures induced
by each motion mode. The leading-order velocity components can be calculated by
using (4.4) and retaining the first term of the expansion in powers of η of (2.13) and
(2.14), which yields

vr0 =

{
3z2(2 − 3r2)

10h3
0(r)

− z

h0(r)

[
3(2 − 3r2)

10h0(r)
+ 1

]}
cos ϕ +

[
2z

h0(r)
− 1

]
cos(ϕ − γ )

V(ω, β)
,

vϕ0 = −
[

3z2

5h2
0(r)

− 8z

5h0(r)

]
sinϕ −

[
2z

h0(r)
− 1

]
sin(ϕ − γ )

V(ω, β)
,

vz0 =

[
2z3(4r − r3)

5h4
0(r)

− z2r(r2 + 26)

10h3
0(r)

]
cosϕ +

z2r cos(ϕ − γ )

h2
0(r)V(ω, β)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.5)

Expressions (4.4) and (4.5) reduce to the corresponding pressure and velocity fields
in the gap region for the cases of purely translational and rotational motions near
a rigid wall (Goldman et al. 1967b; O’Neill & Stewartson 1967; Cooley & O’Neill
1968).

The calculation of the hydrodynamic drag forces and torques is a singular
perturbation problem in the small parameter ε, in which it requires asymptotic
matching with the outer non-lubrication viscous region. Following earlier work
(Goldman et al. 1967b; O’Neill & Stewartson 1967; Cooley & O’Neill 1968), the
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Figure 4. Leading-order (rigid-wall) pressure and stress contours. (a) Hydrodynamic pressure
contours for purely translational motion, (b) hydrodynamic pressure contours for corkscrew
motion, (c) van der Waals stress contours (independent of rotation), (d ) electric stress contours
(independent of rotation), (e) hydromolecular pressure contours for purely translational motion
and (f ) hydromolecular pressure contours for corkscrew motion. Positive contour labels repre-
sent compression stresses on the substrate, whereas negative ones represent traction stresses.
In this figure, Υ = Ξ = 0.5, and the dotted line represents a circle of spatial unit radius.

leading-order forces and torques become

F h
x0 = 6πµUa

[ (
8

15
− 2

15
ω sinβ

)
ln ε − 0.95429 − 0.25725ω sinβ + o(1)

]
, (4.6)

F h
y0 = 6πµΩa cosβ

[
2

15
ln ε + 0.25725 + o(1)

]
, (4.7)

F h
z0 = 0, (4.8)

T h
x0 = 8πµΩa2 cos β

[
2

5
ln ε − 0.37085 + o(1)

]
, (4.9)

T h
y0 = 8πµUa2

[(
2

5
ω sinβ − 1

10

)
ln ε − 0.19296 − 0.37085ω sinβ + o(1)

]
, (4.10)

T h
z0 = 0, (4.11)

which have been conveniently modified in the present investigation to account for an
arbitrary azimuth angle of rotation β .
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Note that since the problem (2.11) and (2.12) is linear to leading order in η,
the hydrodynamic forces (4.6)–(4.11) produced by the rotational and translational
motions are decoupled. Because, according to the classical Stokesian scaling, these
forces scale linearly with the velocities U and Ω , they are kinematically reversible, in
that if the rotation and translation velocity vectors are reversed at once, the forces and
torques moduli remain invariant but their directions become reversed. As a result of
this kinematically reversible effect, no hydrodynamic lift force is exerted on the sphere
to leading order in η, and the intermolecular forces (4.1) and (4.2) are the only forces
acting along the normal axis to the substrate. The classic DLVO theory therefore
holds in the first approximation, and the particle can only be caused to adhere to the
substrate if the electrolyte concentration is larger than its critical coagulation value
c�

i0 given by (2.23).
Additionally, the decoupling between rotation and translation causes the leading-

order drag force (4.6) to remain invariant if rotation about an axis parallel to the
translation axis is enabled, β =0. This effect is shown in figure 4(a, b) and can be
explained in terms of the antisymmetry of the leading-order hydrodynamic pressure
with respect to the axis θ = π/2 − γ or ϕ = π/2, for any value of γ , which cancels the
effects of the rotational motion on the pressure along the x-axis.

Similarly, a hydrodynamic drift force (4.7) is also exerted on the sphere
perpendicularly to its translation axis for β 
= π/2, which solely depends on the
rotational velocity. This force can be of paramount importance in the study of
the near-contact trajectories of particles and micro-organisms. In particular, the
hydrodynamic effect of the drift force in the case of corkscrew motion, β = 0, was
found in an earlier work by Lauga et al. (2006), to be responsible, when coupled to
the corresponding drift force exerted on its flagella, for the circular swimming-path
dynamics of Escherichia coli bacteria when they are close to a rigid boundary.

As shown below, effects produced by the presence of a nearby deformable sticky
substrate modify the conclusions derived from the rigid-wall case in which (i) a lift
force is induced as a result of a combined elastohydromolecular effect, (ii) the forces
no longer scale linearly with the velocities, (iii) the drift force becomes dependent
on the translational velocity as well, (iv) the drag force does not remain invariant if
corkscrew motion is enabled, and (v) the limiting conditions for the onset of adhesion
are not generally determined solely by the critical coagulation concentration.

5. Elastohydromolecular forces on a gliding sphere (η > 0)
The compliance of the substrate couples the hydrodynamic field described by the

Reynolds equation (2.11) with the substrate responses (A 19), (A 20) or (A 21), and
with the intermolecular stress distributions (2.15) and (2.17). Such coupling effect
breaks the intrinsic symmetry of the Stokes equations (2.2)–(2.4) and renders the
problems (2.2)–(2.4) and (2.11)–(2.12) nonlinear.

To second order in η, (2.11) becomes

r2 ∂2P1

∂r2
+

[
r +

3r3

h0(r)

]
∂P1

∂r
+

∂2P1

∂ϕ2
=

18

5

r3(6 + r2)

h5
0(r)

H0 cos ϕ

+
48

5

r

h3
0(r)

∂H0

∂ϕ
sin ϕ +

12

5

r2(r2 − 4)

h4
0(r)

∂H0

∂r
cos ϕ. (5.1)

Equation (5.1) is subject to boundary conditions (2.12). The case of a thin compressible
layer (A 19) is addressed in detail in this section.
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Figure 5. Functions f , g, υ and ξ obtained from the numerical integration of (5.5)–(5.8).

To leading order in η, (A 19) yields the normal surface deformation

H0 = P0 + ΠvdW
0 + Πel

0 =
6r cosϕ

5h2
0(r)

− Υ

h3
0(r)

+ Ξe−κ[h0(r)−1]. (5.2)

Substituting this expression into the second-order balance Reynolds equation (5.1),
we obtain

r2 ∂2P1

∂r2
+

[
r +

3r3

h0(r)

]
∂P1

∂r
+

∂2P1

∂ϕ2
=

72

25

r4(20 + r2)

h7
0(r)

cos2 ϕ +

{
18

5

Υ r3(r2 − 14)

h8
0(r)

+
12

5

Ξκr3(4 − r2)e−κ[h0(r)−1]

h4
0(r)

+
18

5

Ξr3(6 + r2)e−κ[h0(r)−1]

h5
0(r)

}
cos ϕ − 288

25

r2

h5
0(r)

. (5.3)

A particular integral of the form

P1 = f (r) cos2 ϕ + [Υ υ(r) + Ξξ (r, κ)] cosϕ + g(r) (5.4)

is substituted into (5.3), which yields the linear system of ordinary differential
equations

L2f =
72

25

r4(20 + r2)

h7
0(r)

, (5.5)

L1υ =
18

5

r3(r2 − 14)

h8
0(r)

, (5.6)

L1ξ =
12

5

κr3(4 − r2)e−κ[h0(r)−1]

h4
0(r)

+
18

5

r3(6 + r2)e−κ[h0(r)−1]

h5
0(r)

, (5.7)

L0g + 2f = −288

25

r2

h5
0(r)

, (5.8)

with Ln a differential operator given by

Ln = r2 d2

dr2
+

[
r +

3r3

h0(r)

]
d

dr
− n2, with n = 0, 1, 2. (5.9)

For r � 1, f = O(r2), g = O(1), υ = O(r) and ξ =O(r). Similarly, for r � 1,

f =O(r−8), g = O(r−8), υ = O(r−11) and ξ = O(e−κr2

/r3). Therefore, the boundary
conditions of (5.5)–(5.8) are f = υ = ξ = 0 and g′ = 0 for r = 0, and vanishing values
of f , g, υ and ξ for large r . Figure 5 shows the solutions to (5.5)–(5.8), which need to
be obtained numerically. Nonetheless, for later use, the auxiliary function σ =2g + f
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is defined by combining (5.5) and (5.8). It can be shown that the resulting differential
equation has the exact solution

σ = 2g + f =
18

125

(14 − 5r2)

h5
0(r)

, with

∫ ∞

0

σr dr =
48

125
. (5.10)

The dimensionless hydromolecular pressure perturbation is given by

P
�
1 = P1 + ΠvdW

1 + Πel
1

= f (r) cos2 ϕ +

{
Υ

[
υ(r) +

18r

5h6
0(r)

]
+ Ξ

[
ξ (r, κ) − 6rκe−κ[h0(r)−1]

5h2
0(r)

]}
cosϕ

+ g(r) − 3Υ 2

h7
0(r)

− κΞ 2e−2κ[h0(r)−1] + ΞΥ

{
e−κ[h0(r)−1]

h3
0(r)

[
3

h0(r)
+ κ

]}
, (5.11)

where we use (3.2), (3.3), (5.2) and (5.4). Because P
�
1 decays sufficiently rapidly for

large r , the calculation of the force and torque perturbations thereby is not a singular
perturbation problem, in which the required indefinite integrals of the hydromolecular
pressure perturbation are convergent for large r .

Figures 6 and 7 show the contours of the first perturbations of the hydrodynamic
pressure (5.4), the hydromolecular pressure (5.11) and the intermolecular stresses (3.2)
and (3.3), non-dimensionalized with µUa1/2/δ3/2, to illustrate the rotational effects.
The substrate compliance decreases and increases the hydrodynamic overpressure
and underpressure levels respectively, which breaks the antisymmetry of the leading-
order hydrodynamic pressure contours and induces a lift force, and drag-force and
drift-force perturbations. Note that the corkscrew rotation actively affects the pressure
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component of the drag force, as observed by comparing the projection along the x-axis
of the contours in figures 6 and 7 and superposing them onto those shown in figure 4.

The shear-stress perturbations can be obtained by differentiating the second term
of the expansion of (2.13) and (2.14) in powers of η0, which yields

τrz1 =
∂vr1

∂z

∣∣∣
z=h0(r)

=

[
12r(4 − r2)

25h5
0(r)

+
h0(r)

2

df (r)

dr

]
cos2 ϕ

+

{
Υ

h5
0(r)

− Ξe−κ[h0(r)−1]

h2
0(r)

}
2 cos(ϕ − γ )

V(ω, β)
+

{
2Ξ (4 − r2)e−κ[h0(r)−1]

5h3
0(r)

+
2Υ (r2 − 4)

5h6
0(r)

+
h0(r)

2

[
Υ

dυ(r)

dr
+ Ξ

∂ξ (r, κ)

∂r

]}
cos ϕ − 12r cos ϕ cos(ϕ − γ )

5h4
0(r)V(ω, β)

+
h0(r)

2

dg(r)

dr
,

(5.12)

and

τϕz1 =
∂vθ1

∂z

∣∣∣
z=h0(r)

= −
[

48r

25h4
0(r)

+
h0(r)f (r)

r

]
sinϕ cosϕ

+

{
8Υ

5h5
0(r)

− 8Ξe−κ[h0(r)−1]

5h2
0(r)

− [Υ υ(r) + Ξξ (r, κ)]h0(r)

2r

}
sin ϕ

+

[
Ξe−κ[h0(r)−1]

h2
0(r)

− Υ

h5
0(r)

]
2 sin(ϕ − γ )

V(ω, β)
+

12r cosϕ sin(ϕ − γ )

5h4
0(r)V(ω, β)

, (5.13)

where we use (5.2) and (5.4).
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The values of the forces obtained from the analytical integration of (5.11)–(5.13)
are compared in what follows to the numerical solution of the problem (2.11), (2.12)
and (A 19), which was integrated by using a second-order finite-differences numerical
scheme. In this investigation, torques are not calculated since they are found to be of
O(εη0), which correspond to higher-order effects that are not considered here.

5.1. Lift force

Integrating the asymptotic expansion of the hydromolecular pressure (5.11) over
the vertical projection of the inner element of the surface of the sphere in
cylindrical coordinates, dSz = −a2εr dr dϕez , and using expressions (5.10), the
elastohydromolecular lift force

Fz =
µUV(ω, β)a

ε1/2

∫ ∞

0

∫ 2π

0

P
�
1 r d r dϕ

=
πµUV(ω, β)a

ε1/2

{
−Υ +

2Ξ

κ
+ η0

[
48

125
− (Υ − Ξ )2

]

+ O
(
η3

0, η
3
0Υ

2, η3
0Ξ

2, η3
0Υ Ξ, η3

0Υ
2Ξ 2, η3

0Υ Ξ 3, η3
0Υ

3Ξ
)}

(5.14)

is obtained. It can be shown that the contribution of the shear stresses to the lift
force is of order εη0 � η0 (Urzay et al. 2007), which is neglected in this analysis.
The lift force (5.14) is composed of two leading-order terms that represent the values
(4.1) and (4.2) of the intermolecular forces on a small sphere near a rigid wall.
These are the two fundamental acting forces in the DLVO theory. The lift force
also includes a term 48η0/125, which corresponds to the positive elastohydrodynamic
lift force (Weekley et al. 2006; Urzay et al. 2007). The term −(Υ − Ξ )2 in the
squared bracket represents a negative elastomolecular lift force that is a nonlinear
superposition of intermolecular effects; this force corresponds to the disturbance of
the intermolecular force on a stationary sphere induced by the soft substrate, as shown
in Appendix B by the second-order term of (B 2). Higher-order terms result from a
full elastohydromolecular coupling and involve combinations of the hydrodynamic
and intermolecular compliances, such that the resulting dimensionless groups are
proportional to even powers of the velocity; the expansion of the lift force remains
kinematically irreversible to every order, in which its direction is independent of the
direction of rotation and translation.

To leading order in η0, only the DLVO force, the origin of which is purely
related to the intermolecular stresses and not hydrodynamically enhanced, acts on
the particle along the z-axis; this force is kinematically irreversible, although the flow
is still Stokesian in a linear sense. For non-zero η0, the existence of a kinematically
irreversible lift force of elastohydromolecular origin is explained in terms of the
nonlinearity induced by the substrate compliance and intermolecular effects. Nonlinear
effects in Stokes-type flows can be produced by small convective disturbances in the
flow (Saffman 1964; Leighton & Acrivos 1985), non-Newtonian fluid behaviours
(Hu & Joseph 1999) or electrokinetic effects (Bike & Prieve 1995), all of which
induce kinematically irreversible forces on submerged particles and are important in
certain range of rheological applications. In this model, the elastohydromolecular lift
force is produced by the combined action of the intermolecular and hydrodynamic
stresses on the substrate, which ultimately modify the compliant gap geometry and
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Figure 8. Influences of rotation ω and azimuth angle of rotation β on the lift force (5.14) in
the absence of intermolecular forces, Ξ = Υ = 0. The numerical and asymptotic solutions are
shown by solid and dashed lines, respectively.

the hydrodynamic flow through that region as shown by the contours of the pressure
and stress disturbances in figures 6 and 7.

5.1.1. Influences of rotation and of rotation-axis orientation on the lift force

Rotational motions distort the magnitude and orientation of the pressure
distribution in the gap and also modify the gap geometry, as observed in figure 7. To
isolate the rotational effects, the lift force (5.14) is non-dimensionalized independently
of the velocity scale V(ω, β), and expressed as a function of the translational
hydrodynamic compliance η0/V(ω, β) as shown in figure 8, where intermolecular
effects have been neglected for illustrative purposes. As advanced in a previous study
(Urzay et al. 2007), the inverse purely rolling motion (ω = −1, β = π/2) completely
suppresses the production of elastohydrodynamic lift force, since a local Couette flow
is induced in the gap, and the hydrodynamic pressure becomes zero to every order of
η0. That is not the case when the intermolecular forces are not negligible, since both
the leading-order intermolecular and second-order elastomolecular contributions to
the lift force are present in (5.14). Similarly, the present formulation reveals that,
for the same translational velocity, particle dimensions and substrate mechanical
properties, the purely rolling motion (ω = 1, β = π/2) produces a larger lift force than
the corkscrew (ω = 1, β = 0) and translational (ω = 0) motions; during the rolling
motion, the fluid entrainment of the combined rotation and translation are aligned
along the θ =0 axis and both effects more strongly synergize causing a larger positive
overpressure peak in the gap and therefore larger substrate deformations. In this
model, no negative values of the elastohydrodynamic lift force were found for any
combination of rotation and translation.

5.1.2. Influences of intermolecular effects on the lift force

Figure 7 shows that the intermolecular stresses produced by the electric and van der
Waals forces disturb the compliant wall and modify the net normal stress acting on
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Figure 9. Dimensionless elastohydromolecular lift force on the sphere, for any rotation rate
and rotation axis orientation, as a function of the hydrodynamic compliance η0 for −1 � Υ � 1,
with an interval step ∆Υ =0.1 between lines, for (a) deionized solvents, Ξ = 0, and (b)
ionized solvents with Ξ = 0.035 (electric repulsion) and κ = 10. The dotted envelope line
represents the values for elastohydrodynamic adhesion, beyond which no solution of (2.11),
(2.12) and (A 19) was found because of a loss of static mechanical equilibrium on the substrate
surface.

the sphere. The influences of these intermolecular effects on the lift force are shown
in figure 9, which values are independent of ω and β . For negative and order-unity
values of Υ , or more precisely Υ � −(48/125)1/2, which correspond to order-unity and
repulsive van der Waals forces, the lift force decreases with increasing η0 because of
the gap-distance-augmentation effect outlined in Appendix B, by which the repulsion
decreases because of the increase of the substrate compliance and the effective
clearance, which dominates the elastohydrodynamic force that typically increases with
increasing η0. For smaller but repulsive van der Waals forces, −(48/125)1/2 � Υ < 0,
the lift force is positive and increases with η0. Slightly attractive van der Waals forces
produce negative lift forces on the sphere up to a resuspension or lift-off hydrodynamic
compliance η0L, beyond which the elastohydrodynamic effect dominates and a positive
lift force occurs. This increase proceeds up to a critical hydrodynamic compliance
η0C for the occurrence of irreversible elastohydrodynamic adhesion, in which no
solution of the problem (2.11), (2.12) and (A 19) is found beyond η0C at constant Υ

because of a loss of static mechanical equilibrium on the substrate surface. Positive
and order-unity values of Υ , which correspond to large and attractive van der Waals
forces, enhance earlier irreversible elastohydrodynamic adhesion. The lift-off and
elastohydrodynamic adhesion processes are addressed in detail in § 6, and a similar
but simpler adhesion phenomenon is exemplified in AppendixB for a stationary
sphere. Solvent ionization and electric repulsion augment the lift force, decrease the
magnitude of the lift-off hydrodynamic compliance, and they extend the irreversible
elastohydrodynamic adhesion boundary to larger η0C by electrically stabilizing the
substrate surface.
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5.2. Drag-force and drift-force first perturbations

The perturbations of the drag and drift forces on the sphere are calculated as

Fx1 = −µUVaη0

∫ 2π

0

∫ ∞

0

[
P

�
1 r2 cos(ϕ − γ ) + τrz1r cos(ϕ − γ ) − τϕz1r sin(ϕ − γ )

]
dr dϕ

= πµUaη0

{
Ξ [E(κ) +J(κ)ω sinβ] − Υ [F− Gω sinβ]

+ O
(
η2

0, η0Υ
2, η0Ξ

2, η0ΞΥ
)}

, (5.15)

and

Fy1 = −µUVaη0

∫ 2π

0

∫ ∞

0

[
P

�
1 r2 sin(ϕ − γ ) + τrz1r sin(ϕ − γ ) + τϕz1r cos(ϕ − γ )

]
dr dϕ

= −πµUaη0

{
ω cos β [Υ G + ΞJ(κ)] + O

(
η2

0, η0Υ
2, η0Ξ

2, η0ΞΥ
)}

(5.16)

where the electric force coefficients E(κ) and J(κ) are given by

E(κ) = 2 − 6κ

5
+ (6κ − 4)

κ

5
eκEi(−κ) − 1

2

∫ ∞

0

ξ (r, κ)r2 dr,

J(κ) = −2 − 6κ

5
− κ

5
(6κ + 16)eκEi(−κ) +

1

2

∫ ∞

0

ξ (r, κ)r2 dr,

⎫⎪⎪⎬
⎪⎪⎭ (5.17)

which are shown in figure 10, and with the van der Waals force coefficients F and G
given by

F =
17

25
+

1

2

∫ ∞

0

υ(r)r2 dr = 0.9905 and G =
8

25
− 1

2

∫ ∞

0

υ(r)r2 dr = 0.0095.

(5.18)

The drag-force and drift-force perturbations are composed of two terms of O(η0Υ )
and O(η0Ξ ): the van der Waals and electric drag/drift forces. These are representative
of the forces induced by mixed elastohydromolecular effects. Higher-order terms
involve combinations of the hydrodynamic and intermolecular compliances, such that
the resulting dimensionless groups are proportional to odd powers of the velocity;
the expansions of the drag and drift force remain kinematically reversible to every
order, in which their direction changes under gliding direction reversal. Note that if
the intermolecular effects are negligible, Υ = Ξ =0, the substrate-deformation effects
on the drag and drift forces become of O(η2

0) for η0 � 1, which cannot be analytically
captured by solely retaining the order O(η0) terms in the expansions (5.15) and (5.16).
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disturbance, obtained by numerical integration of (2.11), (2.12) and (A 19), in the absence of
intermolecular forces, Υ = Ξ = 0.

5.2.1. Influences of rotation and rotation-axis orientation on the drag-force disturbance

Figure 11 shows the effects of the rotation ω and the azimuthal orientation β

of the rotation axis on the disturbance of the drag force, obtained by numerical
integration of (2.11), (2.12) and (A 19), in the absence of intermolecular forces,
Υ = Ξ = 0. The substrate compliance reduces the leading-order drag force (4.6)
because of a decrease in the hydromolecular pressure and viscous shear stresses
in the deformed gap region. The inverse purely rolling motion (ω = −1, β = π/2)
completely suppresses the elastohydrodynamic drag-force disturbance, since no
deformation is produced in this case. For the same translational velocity, particle
dimensions and substrate mechanical properties, the purely rolling motion (ω =1,
β = π/2) produces a larger drag-force reduction than the corkscrew (ω =1, β = 0)
and translational (ω = 0) motions. For η0 =O(1), the elastohydrodynamic drag-force
disturbance produced by surface-deformation effects is approximately 6 ln(1/ε) times
smaller than the leading-order force (4.6), which, as a maximum, represents a 5 %–
10 % drag reduction for ε =0.1. It must be emphasized that the rotational and
translational motions are nonlinearly coupled as in the corkscrew motion, for which
rotation about an axis parallel to the translation axis induces an additional drag
reduction; this nonlinear effect departs from the decoupled behaviour of the rotational
and translational motions observed in the leading-order drag force (4.6), which is
typical of linear viscous flows. In this model, no negative values of the elastohy-
drodynamic drag-force disturbance were found for any combination of rotation and
translation.

5.2.2. Influences of the intermolecular effects on the drag-force disturbance

The influences of the intermolecular effects on the drag-force disturbance on the
sphere are shown in figure 12. For negative values of Υ , which correspond to repulsive
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Figure 12. Dimensionless elastohydromolecular drag-force disturbance on a translating
sphere as a function of the hydrodynamic compliance η0 for −1 � Υ � 1, for (a) deionized
solvents, Ξ =0, and (b) ionized solvents with Ξ = 0.035 (electric repulsion) and κ = 10. The
dotted envelope line represents the values for hydrodynamic adhesion, beyond which no
numerical solution of (2.11), (2.12) and (A 19) was found because of a loss of static mechanical
equilibrium on the substrate surface.

van der Waals forces, the drag-force disturbance increases with η0, which results in
an additional drag reduction to that solely produced by substrate-deformation effects.
Slightly attractive van der Waals forces, Υ � 1, produce a drag increase on the sphere
up to a critical compliance, beyond which the elastohydrodynamic effect dominates
and a drag reduction occurs. Positive and order-unity values of Υ , which correspond
to large and attractive van der Waals forces enhance irreversible elastohydrodynamic
adhesion. Electric repulsion augments the drag-reduction trend and extends the
elastohydrodynamic adhesion boundary to larger η0.

5.2.3. Influences of the intermolecular effects on the drift-force disturbance

Substrate-deformation effects are found to play a very weak role on the drift
force. For a stationary rotating sphere near a soft substrate, ω → ∞, U → 0,
this can be explained in terms of the mutual cancellation of the two following
effects: a hydrodynamic overpressure decrease in the gap region, which increases
the drift, and the loss of traction due to the viscous shear-stress decrease in the
same region, which reduces the drift force; both effects are found to be of the
same magnitude in the range of hydrodynamic compliances η0 studied in this
analysis, which yields a negligibly small drift disturbances with respect to the
leading-order force (4.7). Nonetheless, (5.16) predicts a drift reduction and increase
due to electric repulsion and van der Waals forces, respectively, both of which
actively modify the shear stress distribution in the gap and the viscous-traction
efficiency.
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Figure 13. Lift-off and critical hydrodynamic compliances for elastohydrodynamic adhesion
as a function of the van der Waals compliance, for (a) deionized solvents, Ξ = 0, and
(b) ionized solvents with Ξ =0.035 (electric repulsion) and κ = 10. (c) Gliding-power Ẇ
isolines (dot-dashed lines) in deionized solvents, with Ẇ1 < Ẇ2 <Ẇ3. The figure also shows
two examples of migration mechanisms on a soft and sticky substrate. (d ) Swimming-induced
migration: a slow swimmer gets entrapped in an accessible potential minimum as it approaches
the substrate surface, from where it escapes when the lift-off velocity ηL is achieved. (e)
Shear-induced migration: a particle close to the substrate migrates under the action of
sufficiently high shear rates γL.

6. Elastohydrodynamic adhesion and lift-off
A characteristic lift-off compliance η0L can be defined as that for which the lift

force becomes zero:

η0L ≈
{

125

48

[
∆vdW

0 − 2∆el
0

κ
+

(
∆vdW

0 − ∆el
0

)2

]}1/2

, (6.1)

which is representative of the reversible adhesion on the substrate; for η0 = η0L,
the particle can undergo lateral motions along the substrate surface. For a given
set of intermolecular parameters and particle dimensions, the lift-off hydrodynamic
compliance can be achieved by sufficiently large gliding velocities or substrate
compliances.

For η0 < η0L, the lift force on the particle is negative, and irreversible elastohy-
drodynamic adhesion occurs for sufficiently large ∆vdW

0 . This adhesion mechanism is
due to surface instabilities on the substrate, and however qualitatively similar to the
elastostatic adhesion mechanism for a stationary sphere presented in Appendix B;
here the hydrodynamic pressure plays an important role in the stabilization of the
surface. The limiting values for irreversible elastohydrodynamic adhesion are given by
the critical hydrodynamic compliance η0C , which needs to be calculated numerically
and depends on the intermolecular compliances as shown in figure 13(a, b). For
η0 > η0L, the lift force is positive, but irreversible elastohydrodynamic adhesion is not
fully prevented since the substrate becomes softer and more unstable as η0 increases.
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That adhesion can occur for positive lift forces may represent a counter-intuitive
event, especially if comparison to the stationary-sphere case in Appendix B is made,
because elastostatic adhesion always occurs there for net attractive intermolecular
forces. This concept can be explained by use of figure 9 where, by holding Υ and
Ξ constant and varying η0, effects induced solely by the substrate softness can be
extracted: irreversible elastohydrodynamic adhesion events for Fz > 0 observed in
figure 9 show that sufficiently large compliances destabilize the substrate surface for a
given gliding velocity, particle dimensions, gap distance and intermolecular intensity,
and promote adhesion by decreasing the strength of the restoring elastic stress.
Similarly, effects induced solely by the gliding velocity can be extracted by keeping
∆vdW

0 constant in figure 13(a, b) and varying η0 along a vertical line: sufficiently
small gliding velocities enhance elastohydrodynamic adhesion by hydrodynamically
destabilizing the substrate surface for a given substrate compliance, gap distance,
particle dimensions and intermolecular intensity. An increase on the repulsive electric
force decreases the extension of the hydrodynamic adhesion region, as shown in
figure 13(b), by exerting a stabilizing compressive stress on the substrate surface.
The irreversible elastohydrodynamic adhesion mechanism can occur in ionized and
deionized solvents. In deionized solvents there is no spontaneous electrical interaction;
therefore elastohydrodynamic adhesion cannot be described by the classic DLVO
theory.

It is worth emphasizing that the reversible elastohydrodynamic regime η0 = η0L

corresponds to a stable regime in a dynamic lift-off process at constant gliding power
Ẇ under small quasi-static perturbations of the gap distance. An iso-power gliding
trajectory Ẇ =Fx0U = constant, on a {η0, ∆

vdW
0 } plane, is given by

η0 ∼ C1∆
vdW 5/8

0

[
ln(∆vdW 1/4

0 /C2)
]−1/2

(6.2)

for deionized solvents, where C1 = f (Ẇ ) =O(1) and C2 = O(ε∆vdW 1/4

0 ) =O(∆vdW 1/4

0a ) �
1 are two constants, with ∆vdW 1/4

0a as the van der Waals compliance based on a gap

distance of O(a). A necessary requirement for (6.2) to be accurate is that ∆vdW 1/4

0 � C2,

since ε = O(1) when ∆vdW 1/4

0 =O(C2). As shown in figure 13(c), a small decrease of the
minimum gap clearance δ below its lift-off value induces a positive lift force, which
returns the particle to its initial vertical position above the substrate. However, a
sufficiently large perturbation of the particle position towards the substrate can induce
irreversible elastohydrodynamic adhesion. Similarly, an increase of the minimum gap
clearance above its lift-off value induces a positive lift force, which returns the particle
to its initial vertical position above the substrate. This stable equilibrium is similar
to that found for ionized solvents in the DLVO secondary minimum, from which
particles and micro-organisms are believed to be able to escape from the potential
well due to van der Waals retardation effects at large gap distances (Israelachvili
1985; Lyklema 2005). Similar dynamics are found for constant-force trajectories. On
the basis of these results, a reversible adhesion regime and resuspension may be
envisioned for a constant-power micro-swimmer as that depicted in figure 13(d ).
The lift-off and lateral motility of the swimmer are entirely elastohydrodynamically
enhanced, such that these effects cease to exist once the gliding motion stops.

Similar phenomena have been observed in the slip and flow of dense polymer
microgel pastes in earlier works (Meeker et al. 2004; Seth et al. 2008), where
experiments, scaling and numerical analyses of elastohydrodynamic models found a
slip regime of sheared pastes over surfaces beyond a critical sliding yield stress. Below
the sliding yield stress, the paste seems to be adhered to the surface. The transition
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point is qualitatively reminiscent of the onset of the irreversible elastohydrodynamic
adhesion regime described in this section.

A ball-park example of the applicability of these results may be the estimation of
the lift-off shear rate for a spherical particle near a deformable and sticky substrate,
as sketched in figure 13(e). Earlier works (Goldman, Cox & Brenner 1967a; O’Neill
1968) have shown that the viscous drag force and torque on a neutrally buoyant
sphere, in a slow linear shear flow near a rigid wall, are Fx =1.7005 × 6πµγa2 and
Ty = 0.4719×8πµγa3, where γ is the undisturbed shear rate. Equating these two results
to the leading-order force and torque (4.6) and (4.10), and neglecting O(η0Υ, η0Ξ )
terms in the drag force, the non-dimensional rotational velocity of the sphere induced
by the shear flow becomes ω =0.567 to maintain dynamical equilibrium, with β = π/2.
The lift-off shear rate is found to be

γL ≈
[
2.403 + ln(a/δ)

2.451

]√
(Asf w − 768ciNAkT λ�Dδ2πe−δ/�D )E(1 − ν)δ

πµ2�a3(1 + ν)(1 − 2ν)
, (6.3)

which increases with the substrate stiffness and intermolecular attraction. The shear
rate can be increased up to the critical shear rate for irreversible elastohydrodynamic
adhesion, for which η0L = η0C , which value depends on the particular relative intensity
of the intermolecular parameters.

If the DLVO criterion (2.22) is used, the critical ionic concentration c�
i for adhesion

can be obtained by solving the system of equations

1 −
(

c�
i0

c�
i

)1/2

(κ�)2e−(κ�−1) + η0�

{
Υ�

[
1

(κ�)4

(
c�
i

c�
i0

)2

+

(
c�
i

4c�
i0

)
(κ�)2e−2(κ�−1)

−
(

c�
i

c�
i0

)3/2
e−(κ�−1)

κ�

]
− 48

125Υ�κ�

(
c�
i

c�
i0

)1/2
}

= O(η2
0�),

1 −
(

c�
i0

c�
i

)1/2

κ�e−(κ�−1) + η0�

{
Υ�

[
1

5(κ�)4

(
c�
i

c�
i0

)2

+

(
c�
i

8c�
i0

)
(κ�)e−2(κ�−1)

−
(

c�
i

c�
i0

)3/2
e−(κ�−1)

κ�
m(κ)

]
− 24

125Υ�κ�

(
c�
i

c�
i0

)1/2
}

= O(η2
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(6.4)

where we use (5.14). In this formulation, η0� and Υ� are based on δ0�, and m(κ) is
given by (B 4). It can be shown that the expansions

c�
i

c�
i0

= 1 − η0�

(
0.053Υ� − 48

125Υ�

)
+ · · · (6.5)

κ� = 1 + η0�

(
0.223Υ� − 24

125Υ�

)
+ · · · (6.6)

are asymptotic solutions of (6.4) for η0� � 1. In particular, (6.5) represents the
elastohydrodynamic correction to the critical coagulation concentration, and it shows
(i) that the perturbation of the critical concentration is kinematically irreversible
in which it does not depend on the velocity direction, and (ii) that the critical
concentration decreases with increasing η0� if the van der Waals force is strong
enough to outweigh the elastohydrodynamic repulsion, Υ� > 2.691, and increases
with increasing η0� if the van der Waals force is small enough such that the repulsive
elastohydrodynamic effect prevails, Υ� < 2.691. The elastostatic result (B 5) recovered
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in the limit of small non-dimensional velocities Υ� � 2.691. Therefore, sufficiently
large non-dimensional velocities Υ� < 2.691 contribute to suppress adhesion by
electrolyte addition. Note that Υ = (δ�

0 /δ)3/2Υ� <Υ� and η0 = (δ�
0 /δ)5/2η0� <η0�, so

that the expansion (6.5) is valid for quite small values of η0 since η0 <η0� � 1,
for which the elastohydrodynamic barrier is small, thereby enhancing adhesion
for sufficiently reduced electric repulsion. Equation (6.5) models adhesion in the
hypothetical case that elastic instabilities are negligible in the range δ�

0 <δ � a,
which represents a good approximation for η0 <η0� � 1, and if η0�Υ� < ∆vdW

0C� . In this
formulation, ∆vdW

0C� represents the critical van der Waals compliance for irreversible
elastohydrodynamic adhesion evaluated at η0�, ∆el

0� and κ�, which, to leading order
in η0�, is given by ∆vdW

0C� = 0.451 as detailed in Appendix B. If these conditions are
not satisfied, the particle undergoes irreversible elastohydrodynamic adhesion before
surpassing the energy barrier, and the corrected DLVO criterion (6.5) loses accuracy to
describe adhesion. Similarly, if the solvent is deionized, (6.5) cannot describe adhesion.

7. General influences of the substrate thickness and material incompressibility
If the substrate material is incompressible, ν = 1/2, all the results presented in the

previous sections, such as the lift force, drag and drift-force perturbations, lift-off
and hydrodynamic adhesion compliances, lift-off shear rate and corrections to the
critical concentration, become zero; the substrate behaves as a rigid wall to leading
order in the non-dimensional layer thickness ζ , as noticed in Appendix A. To obtain
the influences of the incompressibility effects, higher-order terms in the ζ asymptotic
expansion of the surface deformation must be retained. If (A 20) is used, it can be
shown that a substrate composed of a thin layer of incompressible material develops
the same type of elastic instability for sufficiently large van der Waals compliances
as the one presented in Appendix B, and that, in the absence of electric forces, the
critical van der Waals compliance for elastostatic adhesion is ∆vdW

2C =0.013. Using
(A 20) and following the same procedures as in § 5, the lift force on a gliding particle
near an incompressible substrate

Fz =
πµUV(ω, β)a

ε1/2

{
− Υ +

2Ξ

κ
+ η2

[
1296

875
− κΞ 2

− 18Υ 2

7
+ Υ Ξκ

[
2κ3eκEi(−κ) + 2κ2 − 2κ + 4

] ]
+ · · ·

}
(7.1)

is obtained, where η2 is given by (A 18). Similar to the lift force (5.14) for the case
of a compressible layer, the sum of the mixed terms of O(η2Υ

2, η2Ξ
2, η2Υ Ξ ) in (7.1)

always has a negative sign independent of the values of Υ and Ξ , which induces
a non-additivity in the intermolecular forces, and it represents the perturbation of
the intermolecular force on a stationary sphere near an incompressible deformable
substrate. The lift-off hydrodynamic compliance is given by

η2L ≈
{

125

48

[
∆vdW

2 − 2∆el
2

κ
+ κ∆el2

2 +
18

7
∆vdW 2

2

− ∆vdW
2 ∆el

2 κ
[
2κ3eκEi(−κ) + 2κ2 − 2κ + 4

] ]}1/2

, (7.2)

where ∆vdW
2 and ∆el

2 are given by (A 25) and (A 26) respectively. Since ηvdW
2 /

η0 = O(ζ 2) � 1, ∆vdW
2 /∆vdW

0 = O(ζ 2) � 1 and ∆vdW
el /∆el

0 =O(ζ 2) � 1, the compliance
of an incompressible layer under a stress load of intermolecular or hydrodynamic
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origin is much less than that of a compressible layer under the same load,
because of confinement effects produced by the rigid substrate, so that the material
incompressibility tends to suppress the elastohydrodynamic adhesion of the particle
to the substrate and reduce the elastohydromolecular effects on the forces.

In this investigation, expressions have not been derived for the lift force and
lift-off compliances for the case of a semi-infinite elastic substrate. Nonetheless, the
perturbation of the lift force on a particle gliding over a semi-infinite elastic medium
can be assumed to scale with η∞, which is given by (A 22), such that the hydrodynamic
lift-off compliance becomes

η∞L ≈
{

C3

[
∆vdW

∞ − 2∆el
∞

κ
+ O

(
∆vdW 2

∞ , ∆el2

∞
)]}1/2

, (7.3)

where ∆vdW
∞ and ∆el

∞ are given by (A 27) and (A 28) respectively, and C3 is an order-

unity constant. The correction term of O(∆vdW 2

∞ , ∆el2

∞ ) represents the perturbation of
the intermolecular force on a stationary sphere near a semi-infinite elastic substrate.
Since η∞/η0 = O(1/ζ ) � 1, ∆vdW

∞ /∆vdW
0 =O(1/ζ ) � 1 and ∆el

∞/∆el
0 =O(1/ζ ) � 1, the

compliance of a semi-infinite elastic layer under a stress load, of intermolecular or
hydrodynamic origin, is much larger than that of a thin compressible layer under
the same load, so that the layer thickness tends to enhance the elastohydrodynamic
adhesion of the particle to the substrate and increase the elastohydromolecular effects
on the forces.

8. Conclusions
Substrate compliance and intermolecular effects on the slow translational and

rotational motions of a small solid spherical particle were analytically and numerically
investigated in this study by making use of a hydrodynamic lubrication approximation.
Electric double-layer and van der Waals stresses were formulated to model the
intermolecular influences in the gap region by using the Derjaguin approximation.
The hydrodynamic compliance η and intermolecular compliances ∆vdW and ∆el were
found to be the relevant non-dimensional parameters that characterize the relative
intensity of the hydrodynamic and intermolecular stresses with respect to the restoring
elastic stresses on the surface. Influences of a general particle drift motion were
analysed by introducing in the formulation the rotational to translational velocity
ratio ω, and the azimuth angle of orientation of the rotation axis β relative to the

translation axis. A characteristic velocity U
√

1 + ω2 + 2ω sinβ was defined as the
gliding velocity for the general case of drift motion, where U is the translational
velocity without drift. The formulation was applied to a substrate composed of a thin
compressible elastic layer coating a rigid foundation, and special emphasis was made
on the influences of attracting van der Waals forces and repulsive electric forces.
Asymptotic formulas were derived in the NRWA, η � 1, and they were compared to
numerical computations for fully deformable substrates, for which η � O(1).

The combination of elastohydromolecular effects was found to induce irreversible
and reversible elastohydrodynamic regimes, a lift force, and drag-force and drift-
force disturbances, all of which appear to be new. For η = ηL a reversible
elastohydrodynamic regime is found. For η < ηL, an irreversible elastohydrodynamic
regime occurs with negative lift forces. For η >ηL, an irreversible elastohydrodynamic
regime occurs with positive lift forces. The limiting values of elastohydrodynamic
adhesion and expressions of the forces were derived in the NRWA limit and compared
to numerical solutions.
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The lift force, which scales with even powers of the gliding velocity, is negative
for large and attracting van der Waals forces, and is positive for repulsive van der
Waals forces or for intermediate attracting van der Waals forces and sufficiently soft
substrates. Electric intermolecular repulsion increases the magnitude of the lift force.
For the same translational velocity, particle dimensions and substrate mechanical
properties, the purely rolling motion (ω = 1, β = π/2) produces a larger lift force
than the corkscrew (ω = 1, β = 0) and translational (ω = 0) motions. In addition to
the leading-order intermolecular forces, to second order in the substrate compliance,
the lift force is composed of elastohydrodynamic and elastomolecular terms, the
latter corresponding to the perturbation of the intermolecular force on a stationary
sphere, which is always attractive and represents a non-additivity of intermolecular
effects. The drag-force perturbation scales with odd powers of the velocity. Substrate
compliance favours a drag-force reduction. The coupling between intermolecular and
elasticity effects induces a van der Waals drag force and an electric drag force.
In general, intermolecular attractive forces increase the drag on the sphere, and
the contrary holds for repulsive forces. For the same translational velocity, particle
dimensions and substrate mechanical properties, the pure rolling motion (ω = 1,
β = π/2) produces a larger drag-force reduction than the corkscrew (ω = 1, β = 0)
and translational (ω = 0) motions. Substrate-deformation effects are found to play
a very weak role on the drift force. Attractive intermolecular forces produce small
increments on the drift force because of a viscous-traction enhancement, and the
contrary holds for repulsive forces.

A reversible elastohydrodynamic adhesion regime was found in both ionized and
deionized solvents for a lift-off hydrodynamic compliance η = ηL, the value of which
increases with ∆vdW and decreases with increasing ∆el . In this regime, particle lateral
motion and lift-off from the wall can occur. The lift-off hydrodynamic compliance
can be achieved by sufficiently large gliding velocities or substrate compliances. This
regime ceases to exist if the gliding motion stops, and it is found to be stable against
small gap disturbances at constant gliding power.

In the region η <ηL, the particle is subject to a negative lift, and an irreversible
elastohydrodynamic adhesion regime occurs for sufficiently large ∆vdW . This
irreversible adhesion mechanism is found in both ionized and deionized solvents,
and is induced by elastic instabilities in the form of surface bifurcations in the
substrate, which have been studied in Appendix B in its elastostatic version for a
stationary sphere near a deformable substrate. The limiting values for irreversible
elastohydrodynamic adhesion are given by the critical hydrodynamic compliance
η = ηC , which were numerically calculated. The compliance ηC was found to increase
with ∆vdW and decrease with increasing ∆el .

In the region η > ηL, the particle is subject to a positive lift force, but an irreversible
elastohydrodynamic adhesion regime can take place because the substrate becomes
softer and more unstable as η0 increases. In this regime, adhesion is enhanced by
sufficiently large substrate compliances and gliding velocities.

An increase in the repulsive electric force tends to suppress elastohydrodynamic
adhesion. However, elastohydrodynamic adhesion can occur and be suppressed in
deionized solvents, where there is no electrical repulsion, and cannot be described by
the classic DLVO theory of colloid stabilization.

Elastohydrodynamic corrections to the DLVO critical coagulation concentration,
for which the energy barrier against Brownian perturbations of the gap distance
is small, were obtained in the NRWA limit for very small η, such that
the elastohydrodynamic barrier was also small, which showed that the critical
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concentration decreases with increasing η because of an enhancement of the attractive
van der Waals force; this trend continues up to a critical van der Waals to
hydrodynamic stress ratio η/∆vdW , above which the elastohydrodynamic repulsion
dominates and the critical coagulation concentration increases with η. The corrected
DLVO critical concentration may be accurate to describe the adhesion process
for sufficiently small compliances such that the elastic substrate remains in static
mechanical equilibrium, but loses accuracy for low-midway compliances for which
elastohydrodynamic adhesion occurs before the particle has surpassed the energy
barrier, and it is not applicable when the solvent is deionized.

Material incompressibility in the substrate is found to suppress adhesion, and
formulas for the lift force and lift-off hydrodynamic compliance have been derived
for a fully incompressible substrate. A semi-infinite elastic substrate is shown to
enhance adhesion and elastohydromolecular effects by having larger hydrodynamic
and intermolecular compliances, which may represent an important feature to account
for in future numerical work and laboratory experiments.

The results obtained in this study show that the mechanical and surface properties of
the substrate and the gliding kinematic characteristics of the particle have important
influences on the adhesive and migrating behaviours, and therefore potential benefits
in practical applications, such as particle and cell manipulations in microfluidics
systems, may be obtained by modifying those magnitudes to enhance or suppress
dynamical phenomena like lift-off from the surface and drag reduction.

The author is indebted to Professor F. A. Williams, Professor J. C. Lasheras
and Professor A. L. Sánchez for their extraordinary mentorship. The author is also
grateful to Professor S. H. Davis, Professor E. Lauga and Professor J. C. Del Álamo
for thoughtful suggestions on earlier drafts and to Dr. B. Alonso-Latorre and Dr. G.
Mauger for encouraging this investigation.

Appendix A. Substrate mechanics
In this analysis, the substrate is modelled by a compliant layer of thickness �

coating a rigid foundation as depicted in figure 1. The material of the layer is
assumed to be isotropic and characterized by its Young modulus E and Poisson
coefficient ν, with 0 <ν < 1/2 for highly compressible materials such as gels, and
ν ∼ 1/2 for highly incompressible materials such as elastomers, for which the Poisson
effect becomes primarily important. The solid stress tensor σ satisfies the internal
equilibrium equation

∇ · σ = 0 (A 1)

in the absence of volumetric forces in the thin layer and is related to the displacement
vector u by the linear constitutive equation

σ =
E(∇u + ∇uT)

2(1 + ν)
+

νE(∇ · u)I
(1 + ν)(1 − 2ν)

, (A 2)

subject to boundary conditions of solid–liquid interface equilibrium and compatibility
of deformations with the rigid foundation

σ · nT = σ � · nT at z = −H, and u = 0 at z = −�, (A 3)

where σ � = −P � I + µ(∇v + ∇vT) is the hydromolecular stress tensor, which is
composed of the sum of the isotropic hydromolecular pressure tensor and the
deviatoric viscous stress tensor. In this formulation, n = (−∂uz/∂r |z = 0, −r−1∂uz/
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∂ϕ|z = 0, 1) + O(ε) is a unit vector normal to the substrate surface. Equations (A 1)–
(A 3) are generally coupled to the lubrication problem (2.11) and (2.12) in a rather
cumbersome way for arbitrary layer thickness �. An asymptotic analysis of this
complicated problem can be performed by assuming that the ratio of the layer
thickness � to the characteristic lubrication region dimension δ/ε1/2 is a small
parameter:

ζ =
ε1/2�

δ
� 1, (A 4)

so that the layer thickness � may well be much larger than the minimum gap distance δ

since �/δ � 1/ε1/2 and ε � 1, but sufficiently small compared with the particle radius,
�/a � ε1/2. This appendix obtains the surface deformation, by solving asymptotically
(A 1)–(A 3), as a function of P � and the hydrodynamic compliance η, for η = O(1)
and ζ � 1.

The qualitative asymptotic behaviour of the solution can be readily extracted from
an order of magnitude analysis of (A 1)–(A 3). Surface loads of order unity applied
on the thin layer are expected to produce a compression normal stress σzz = O(1)
and a vertical deformation uz =O(ζ ). The Poisson effect produces radial and
azimuthal normal stresses σrr = O(1) and σϕϕ = O(1) and displacements ur = O(ζ 2)
and uϕ = O(ζ 2). For nearly incompressible materials, ν ∼ 1/2, the stresses become
independent of the material properties in the first approximation, and the vertical
displacement becomes uz = O(ζ 3) to satisfy the vanishing cubical dilatation constraint
∇ · u = 0 in the incompressible limit (Landau & Lifshitz 1959).

Equations (A 1)–(A 3) are non-dimensionalized with � as the unit of vertical
coordinate, δ/ε1/2 as the unit of radial coordinate, δ as the unit of vector displacement
and E(1 − ν)δ/[�(1 + ν)(1 − 2ν)] as the unit of stress tensor. In these variables, (A 1)
and (A 2) become

∂σrz

∂z
+ ζ

[
1

r

∂

∂r
(rσrr ) +

1

r

∂σrϕ

∂ϕ
− σϕϕ

r

]
= 0,

∂σϕz

∂z
+ ζ

[
1

r

∂

∂r
(rσrϕ) +

1

r

∂σϕϕ

∂ϕ
+

σrϕ

r

]
= 0,

∂σzz

∂z
+ ζ

[
1

r

∂

∂r
(rσrz) +

1

r

∂σzϕ

∂ϕ

]
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 5)

and

σrr =
ν

1 − ν

∂ur

∂z
+

[
∂ur

∂r
+

ν

1 − ν

(
ur

r
+

1

r

∂uϕ

∂ϕ

)]
ζ,

σrϕ =
1 − 2ν

2(1 − ν)

[
r

∂

∂r

(uϕ

r

)
+

1

r

∂ur

∂ϕ

]
ζ,

σrz =
1 − 2ν

2(1 − ν)

(
∂ur

∂z
+ ζ

∂uz

∂r

)
,

σϕϕ =
1 − 2ν

1 − ν

(
1

r

∂uϕ

∂ϕ
+

ur

r

)
ζ +

ν

1 − ν
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∂uz

∂z
+ ζ

(
1

r

∂

∂r
(rur ) +

1

r

∂uϕ

∂ϕ
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,

σϕz =
1 − 2ν

2(1 − ν)

(
∂uϕ

∂z
+

ζ

r

∂uz

∂ϕ

)
,

σzz =
∂uz

∂z
+

ν

1 − ν

[
1

r

∂

∂r
(rur ) +

1

r

∂uϕ

∂ϕ

]
ζ.
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(A 6)
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The regular asymptotic expansions

σ = σ0 + ζσ1 + ζ 2σ2 + O(ζ 3)

u = u0 + ζ u1 + ζ 2u2 + O(ζ 3),

}
(A 7)

are substituted into (A 5) and (A 6). The hydrodynamic compliance η defined in § 2 is
described below by an asymptotic expansion of the form

η = η̂0 + ζ 2η̂2 + O(ζ 4), (A 8)

where η̂i = ηi/ζ
i . To leading order in ζ , (A 5) and (A 6) reduce to

∂2ur0

∂z2
=

∂2uϕ0

∂z2
=

∂2uz0

∂z2
= 0, (A 9)

subject to ur0 = uϕ0 = uz0 = 0 on z = −1 and ∂uz0/∂z = −η0P
� at z = 0. In this

formulation, the hydrodynamic compliance η0 is given by

η0 =
µUV(ω, β)�a1/2(1 + ν)(1 − 2ν)

E(1 − ν)δ5/2
. (A 10)

The leading-order stresses and deformations are given by

σrr0 = σϕϕ0 = −νη0P
�

1 − ν
, σzz0 = −η0P

�, σrϕ0 = σrz0 = σϕz0 = 0,

and

ur0 = uϕ0 = 0, uz0 = −η0P
�(1 + z), (A 11)

which resemble the classic rigid foundation model (Johnson 1985), in which the wall
deflection is proportional to the net normal stress (intermolecular and hydrodynamic
stresses). If the Poisson effect is negligible, the leading-order radial and azimuthal
normal stresses vanish in the first approximation because of the large material
compressibility. If the Poisson effect is important, ν ∼ 1/2, the hydrodynamic
compliance η0 and elastic displacements vanish in this approximation, giving no useful
information of the deformation field, for which higher-order terms must be retained.
It is worth mentioning that, for large hydrodynamic compliances, η0 = O(ε−1/2) � 1,
the boundary condition ∂uz0/∂z = −η0P

� at z = 0 becomes inaccurate in this
approximation, because the curvature of the surface may produce non-negligible
viscous shear forces, thereby producing non-negligible contributions by the non-
diagonal terms of the hydromolecular stress tensor to the surface deformation field.

To second order in ζ , (A 5) and (A 6) become

∂2ur1

∂z2
=

η0

1 − 2ν

∂P �

∂r
,

∂2uϕ1

∂z2
=

(
η0

1 − 2ν

)
1

r

∂P �

∂ϕ
,

∂2uz1

∂z2
= 0, (A 12)

subject to ur1 = uϕ1 = uz1 = 0 at z = −1 and ∂ur1/∂z = ∂uϕ1/∂z = ∂uz1/∂z = 0 at z =0,
solutions to which yield the second-order stresses and deformations

σrr1 = σϕϕ1 = σzz1 = σrϕ1 = 0, σrϕ1 =

(
νη0z

1 − ν

)
∂P �

∂r
, σϕz1 =

(
νη0z

1 − ν

)
1

r

∂P �

∂ϕ
,
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and

ur1 =
η0(z

2 − 1)

2(1 − 2ν)

∂P �

∂r
, uϕ1 =

η0(z
2 − 1)

2(1 − 2ν)

1

r

∂P �

∂ϕ
, uz1 = 0, (A 13)

so that the second-order correction to the vertical displacement is zero.
Finally, to third order in ζ , (A 5) and (A 6) become

∂2ur2

∂z2
=

∂2uϕ2

∂z2
= 0,

∂2uz2

∂z2
= − 2νη0z

1 − 2ν
∇2

⊥P �, (A 14)

subject to ur2 = uϕ2 = uz2 = 0 at z = −1, and

∂ur2

∂z
=

∂uϕ2

∂z
= 0,

∂uz2

∂z
=

νη0∇2
⊥P �

2(1 − ν)(1 − 2ν)
, (A 15)

at z = 0, solutions to which give the displacement field

ur2 = uϕ2 = 0,

uz2 =
νη0∇2

⊥P �

1 − 2ν

[
−z3

3
+

z

2(1 − ν)
+

1 + 2ν

6(1 − ν)

]
.

⎫⎪⎬
⎪⎭ (A 16)

The asymptotic deformation field given by (A 11), (A 13) and (A 16) yields zero cubical
dilatation ∇ · u = 0 to O(ζ 3) in the incompressible limit ν ∼ 1/2.

According to (A 11), (A 13) and (A 16), the substrate deflection

uz = −η0P
� + η2∇2

⊥P � + O(ζ 3) at z = 0 (A 17)

is found, with the higher-order hydrodynamic compliance η2 given by

η2 =
µUV(ω, β)�3

Ea1/2δ7/2
. (A 18)

Note that neither η2 nor uz3 vanish in the incompressible limit ν ∼ 1/2.
For compressible materials, the rigid foundation model

H = P � = P − Υ

[h0(r) + η0H ]3
+ Ξe−κ[h0(r)+η0H−1] (A 19)

represents the first approximation of the substrate deformation, with the
hydrodynamic compliance appearing implicitly in the Reynolds equation (2.11) given
by (A 10). For incompressible materials ν ∼ 1/2, the vertical displacement becomes
O(ζ 3) and (A 17) yields

H = −∇2
⊥P � = −∇2

⊥P + ∇2
⊥

{
Υ

[h0(r) + η2H ]3
− Ξe−κ[h0(r)+η2H−1]

}
(A 20)

as an approximation valid to O(ζ 3), with η2 given by (A 18). Expression (A 20)
represents a much simpler approximation than usual solutions of the deformation
field of incompressible layers based on Hankel transforms (Landau & Lifshitz 1959;
Johnson 1985) and allows the acquisition of asymptotic solutions to the lubrication
problem (2.11) and (2.12) for η2 � 1.

In the asymptotic limit of very thick elastic substrates ζ → ∞, the surface
displacement can be obtained by the method of Green’s functions as detailed in
classic texts of elasticity theory (Landau & Lifshitz 1959; Johnson 1985). In the
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present notation, the surface deformation becomes

H =

∫ 2π

0

∫ ∞

0

P �(r ′, ϕ′)r ′ dr ′ dϕ′√
r ′2 + r2 − 2rr ′ cos(ϕ − ϕ′)

, (A 21)

with

η∞ =
µUV(ω, β)a(1 − ν2)

πEδ2
, (A 22)

the hydrodynamic compliance for semi-infinite (compressible or incompressible)
elastic substrates.

Quantities similar to those represented by the hydrodynamic compliances (A 10),
(A 18) and (A 22) can be obtained to describe the substrate compliance due to the
action of the intermolecular stresses. The van der Waals and electric compliances are
defined as

∆vdW
0 = η0Υ =

Asf w�(1 + ν)(1 − 2ν)

6πE(1 − ν)δ4
(A 23)

and

∆el
0 = η0Ξ =

64(1 + ν)(1 − 2ν)�ciNAkT

E(1 − ν)δ
λ
(
Ψ d

w, Ψ d
s

)
e−κ (A 24)

for thin compressible elastic layers,

∆vdW
2 = η2Υ =

Asf w�3

6πaEδ5
(A 25)

and

∆el
2 = η2Ξ =

64�3ciNAkT

Eaδ2
λ
(
Ψ d

w, Ψ d
s

)
e−κ (A 26)

for thin incompressible elastic layers, and

∆vdW
∞ = η∞Υ =

Asf wa1/2(1 − ν2)

6π2Eδ7/2
(A 27)

and

∆el
∞ = η∞Ξ =

64(1 − ν2)a1/2ciNAkT

πEδ1/2
λ
(
Ψ d

w, Ψ d
s

)
e−κ , (A 28)

for semi-infinite elastic substrates.
The lubrication problem (2.11) and (2.12) is closed by either (A 19), (A 20) or (A 21).

The semi-infinite elastic substrate equation (A 21) yields a three-dimensional nonlinear
partial integro-differential equation when coupled with the lubrication problem (2.11)
and (2.12) that represents quite an analytical challenge, because the hydromolecular
pressure is generally a two-dimensional field. In this analysis, emphasis is mainly made
on the more analytically tractable thin-layer configurations (A 19) and (A 20), because
a thorough physical understanding of these cases, which could be extended to more
involved situations, can be achieved by deriving exact solutions and using asymptotic
methods. Section 7 briefly addresses the influences of material incompressibility and
layer thickness.

Appendix B. Elastostatic adhesion and surface bifurcations in the substrate
In this appendix, the much simpler problem of a stationary sphere standing

off at some distance δ from the wall surface, which represents an effective zero-
Reynolds-number regime, is analysed and used to exemplify the interaction of
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substrate-deformation effects with the intermolecular forces. Since there is no particle
motion, U = 0 and Ω = 0, the hydrodynamic pressure is zero in the gap region (i.e.
the difference between the ambient pressure and the absolute hydrodynamic pressure
in the gap is zero). The van der Waals and electric forces, (4.1) and (4.2), need to be
corrected to account for the substrate elasticity.

The balance of electric and van der Waals forces upon the axisymmetric pseudo-
hertzian static indentation of a sphere to an elastic infinite half-space, in the absence
of fluid flow, is the subject of study of classical theories (Johnson, Kendall & Roberts
1971; Derjaguin, Muller & Toporov 1975). For simplicity, fluid-drainage viscous
effects during particle capture are neglected in this section. Thorough studies on the
dynamics of two colliding soft spheres can be found elsewhere (Davis, Serayssol &
Hinch 1986; Serayssol & Davis 1986), where use was also made of infinite half-space
formulation and numerical solutions were sought. In this section, the analysis is
restrained to a simple description of the quasi-static stability of the flat elastic layer,
which leads to estimates of the parametric ranges for which the problem (2.11) and
(2.12), subject to (A 19), may have a static solution under no fluid flow, and the
reasoning serves to interpret the physical meaning of the elastohydromolecular lift
components of its asymptotic series calculated in § 5.1 for the gliding sphere.

In the absence of fluid motion, the wall constitutive equation (A 19) becomes

H = ∆el
0 e−κ[h0(r)+H−1] − ∆vdW

0

[h0(r) + H ]3
. (B 1)

In this appendix, H represents the wall surface deformation non-dimensionalized
with the minimum gap clearance δ. Equation (B 1) represents the equilibrium balance
between the elastic, electric and van der Waals stresses on the substrate surface.

To unveil the influences of the substrate compliance effects, the asymptotic
expansion of the surface deformation H = H0 + ∆vdW

0 H1 + ∆vdW 2

0 H2 + O(∆vdW 3

0 ),
for ∆vdW

0 � 1, is introduced in (B 1) by keeping the ratio of electric and van der
Waals characteristic stresses ∆el

0 /∆vdW
0 as an order-unity parameter, which yields the

elastomolecular force

Fz = −∆vdW
0 +

2∆el
0

κ
−

(
∆vdW

0 − ∆el
0

)2 − 3∆vdW 3

0 + ∆vdW 2

0 ∆el
0 (κ + 6)

− ∆vdW 2

0 ∆el2

0 (2κ + 3) + κ∆el3

0 + O
(
∆vdW 4

0 , ∆el4

0

)
. (B 2)

In this formulation, Fz is non-dimensionalized with the characteristic elastic force
πE(1 − ν)δ2a/�(1 + ν)(1 − 2ν). The first two terms in (B 2) represent the well-known
van der Waals and electric double-layer forces (4.1) and (4.2) on a sphere near
a rigid wall. The remaining are correction terms that correspond to perturbations
introduced by the substrate elasticity, which show that the electric and van der Waals
components of the intermolecular force are not generally additive when acting on a
deformable wall. The asymptotic expression (B 2) is compared in figure 14(a) with
the numerical solution of (B 1) for deionized solvents. Note that according to (B 2),
the first perturbation introduced by the deformable wall is to enhance the attracting
effect in the case of attractive intermolecular forces (∆vdW

0 > 0 or ∆el
0 < 0) due to

an effective reduction in the gap size, and to suppress the effect of repulsion in
the case of repulsive intermolecular forces (∆vdW

0 < 0 or ∆el
0 > 0) due to an effective

increase on the gap size. For ∆vdW
0L ∼ 2∆el

0 /κ , the force on the sphere is zero in the
first approximation. For ∆vdW

0 < ∆vdW
0L , the force on the sphere is repulsive, and the

opposite occurs for ∆vdW
0 >∆vdW

0L .
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Figure 14. (a) Non-dimensional normal force on the sphere as a function of the van der
Waals compliance for deionized solvents. (b) Map of static solutions, for a stationary
sphere, in terms of the electric compliance ∆el

0 and the van der Waals compliance ∆vdW
0 ;

the hatched area denotes the occurrence of elastostatic adhesion or non-existence of a static
solution, which represents an elastic instability produced by the unbounded attracting van der
Waals or electric stresses, and is bounded by the critical compliance ∆vdW

0C (solid line). The

dot-dashed line denotes the compliance ∆vdW
0L for Fz =0. (c) Centerline elastic displacement

of the substrate as a function of the van der Waals compliance for deionized solvents (solid
line), repulsive (dot-dashed line) and attractive (dashed line) electric forces. Insets show typical
radial deformation profiles in each branch. Calculations are performed here for κ = 10.

Further examination of (B 1) shows the existence of bifurcations in the solution
of the displacement field. Particularizing (B 1) for attracting van der Waals forces
∆vdW

0 > 0 and repulsive electric forces ∆el
0 > 0, which may correspond to the most

usual physical configuration (Israelachvili 1985; Poortinga et al. 2002; Lyklema
2005), shows that as ∆vdW

0 increases, the elastic deformation towards the sphere side
increases, reaching a turning point at which the wall surface develops an unstable
sharp cusp along the axis r = 0, which is representative of elastostatic adhesion or
capture of the stationary particle by the elastic substrate for a minimum compliance
∆vdW

0C = ∆vdW
0C (∆el

0 , κ), in the sense that no equilibrium solution of (B 1) exists for
∆vdW

0 >∆vdW
0C , as shown in figure 14(c). In this regime, the critical compliance ∆vdW

0C

increases with the electric–elastic stress ratio ∆el
0 , as observed in figure 14(b), and

decreases with increasing κ , with ∆vdW
0C = 27/256 for deionized solvents ∆el

0 = 0. For
∆vdW

0 <∆vdW
0C with ∆vdW

0 > 0, two equilibrium solutions of (B 1) may exist for the same
value of ∆vdW

0 , with the low-strained solution being the stable solution. The high-
strained solution is unstable, in which a small perturbation on the surface deformation
towards the sphere side produces a steeper increment of the intermolecular traction
stress compared with the corresponding increments undergone by the electric and
internal restoring elastic stresses in the layer, so that the wall surface departs from
static equilibrium and adhesion occurs with H = −h0(r). A similar description holds
for the case of attractive van der Waals and electric forces, ∆vdW

0 > 0 and ∆el
0 < 0.

In the absence of van der Waals forces, ∆vdW
0 = 0, elastostatic adhesion occurs for

sufficiently attractive electric forces ∆el
0 < ∆el

0C = −1/κe. For repulsive electric and van
der Waals forces, ∆vdW

0 < 0 and ∆el
0 > 0, the elastic layer is always stable and a single

equilibrium solution is obtained. For repulsive van der Waals forces and attractive
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electric forces, ∆vdW
0 < 0 and ∆el

0 < 0, three solutions may be obtained for the same
value of ∆vdW

0 resembling an S-curve, with a stable low-strained branch in which
repulsion dominates, an unstable middle-branch, and a stable high-strained solution
in which there is a balance between attraction, repulsion and the elastic restoring force
that places the flat layer at a short equilibrium distance from the sphere surface; note
that complete elastostatic adhesion (i.e. mechanical disequilibrium of the substrate) is
not possible in this configuration due to the strong singularity of the van der Waals
repulsive stresses.

The intermolecular force asymptotic expansion (B 2) corresponds to the low-strained
stable solutions of (B 1). Note that a particle free to move will not experience
elastostatic adhesion for ∆vdW

0 <∆vdW
0L because the net intermolecular force would be

repulsive. For ∆vdW
0 >∆vdW

0L , the net intermolecular force on the particle is attractive,
but it is not until the gap distance δ becomes sufficiently small, such that ∆vdW

0 > ∆vdW
0C ,

in which the elastostatic adhesive mechanism sets in.
If the DLVO criterion (2.22) is used, adhesion by random perturbations of the gap

distance can occur if the electrolyte concentration is sufficiently large such that the
energy barrier is small as detailed in § 2.2 and shown in figure 1. The critical ionic
concentration for rapid coagulation of the sphere on the deformable substrate can be
obtained by combining (2.22) and (B 2), which yields the system of equations

1 −
(

c�
i0

c�
i

)1/2

(κ�)2e−(κ�−1) + ∆vdW
0�

[
1

(κ�)4

(
c�
i

c�
i0

)2

+

(
c�
i

4c�
i0

)
(κ�)2e−2(κ�−1)

−
(

c�
i

c�
i0

)3/2
e−(κ�−1)

κ�

]
= O

(
∆vdw2

0�

)
,

1 −
(

c�
i0

c�
i

)1/2

κ�e−(κ�−1) + ∆vdW
0�

[
1

5(κ�)4

(
c�
i

c�
i0

)2

+

(
c�
i

8c�
i0

)
(κ�)e−2(κ�−1)

−
(

c�
i

c�
i0

)3/2
e−(κ�−1)

κ�
m(κ)

]
= O

(
∆vdw2

0�

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 3)

where c�
i0 is given by (2.23), and

m(κ) = −κ2

2
eκEi(−κ) +

1 − κ

2
, (B 4)

with Ei as the exponential integral function. In this formulation, ∆vdW
0� is based on

δ = δ�
0 . It can be shown that the expansions

c�
i

c�
i0

= 1 − 0.053∆vdW
0� + O

(
∆vdw2

0�

)
, (B 5)

κ� = 1 + 0.223∆vdW
0� + O

(
∆vdw2

0�

)
(B 6)

are asymptotic solutions of (B 3) for ∆vdw
0� � 1. In particular, (B 5) represents the

perturbation of the critical coagulation concentration (2.23) due to the substrate
elasticity, and it shows that adhesion by electrolyte addition would occur at a
lower concentration level in the hypothetical case in which elastic instabilities are
negligible, which represents a good approximation in the range of validity of (B 5),
∆vdW

0 � ∆vdW
0� � 1, and if ∆vdW

0� <∆vdW
0C� . The value ∆vdW

0C� represents the van der Waals
compliance for elastostatic adhesion evaluated at the DLVO critical coagulation
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conditions (2.22), and it can be obtained numerically by use of (B 1) and noticing
that, in the first approximation, ∆vdW

0� =∆el
0� when c�

i = c�
i0 and κ� = κ�

0 , from which
∆vdW

0C� = 0.452. However, if ∆vdW
0� >∆vdW

0C� elastostatic adhesion occurs before the particle
has surpassed the small energy barrier, and the corrected DLVO criterion (B 5) loses
accuracy. Equation (B 5) is consistent with the fact that substrate-deformation effects
increase the effective value of the attractive forces and decrease that of the repulsive
forces.

The onset of fluid flow by rotational or translational motion of the sphere produces a
non-zero hydrodynamic pressure in the clearance, which alters the adhesion dynamics
exposed in this appendix. These hydrodynamic effects are addressed in § 6.
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